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Abstract 

In t h i s  -ranch, 8 theor3 for  reprosentation of randovly tine- 

variant channels is outlined and applied t o  the developrent of a tapped 

delay line vethod of s i m u l a t i n g  such channels, hm experiwntal re- 

sults obtained with a tapped delay line siwlator are also presented, 

The -randurn begins with definitions of the appmpriate functions 

needed t o  specffy mndo~ly -&i.re-variant systms, 

delay line vethod of simulation f o r  time-variant channels i s  derived, 

Attention is also given t o  determining how closely tho delay  l i ne  systm 

appm;xl.rates the w t h m t i c a l  -del it is supposed to represent, 

Urrear delay di8t0Ption arrd l inear a-plitude distortion pamwters a&- 

aociated w i t h  a channel are defined arrl discuse%d, Then the  equations 

necessarg to compute then on the dig i ta l  computer are derived, 

the theory outlined i n  this -moranduw is  used with a theoretical *del 

of a tropospheric scat ter  channel to  design a digital computer si lulator  

for troposcatter channels, 

w i t h  th ie  el-ulator are presented, 

Next, the tapped 

!he 

hxts 

Finally, some experimental results obtained 



A 



1, Representation of Time-Yariant Cbnnels 

In *W%s reprt, a theory for representation of rsndcmly time-variant 

clvimels is outlined m d  applieB to %he developnt  of a tapped delay line 
1 aethd of s i m d ~ t i a g  such channels. The simd.akion method is due to Stein 

and much of the notation of this x%poril; coincrdes wi%h that of reference 1, 

b 

lit; w i l l  be assumed tbat the channel under cornideration can be represented 

9s s ",ime-variasz.t linear syrjtxm. 

We w i l l .  represent the tmnkmitted s-1 x"t )  as 

!We chame3., 5eing a linear thte-veriant system, is described by its 

h( s , t )  is defined as the response cf the channel a t  time t to an impulse 

applied to the c ~ u n e ~  T s e c c m ~ ~  earlier Qi.e. ,  a t  ttme t-~). =e 

cajnplex envelope ai: h(r,t), w f U .  ke called the equivalent - low-pss impd.se 



Nata y'(tt$ can be written io cmplex envelope form 

It can be 

frequency 

shown that when the bandwidth [ B i a  8rpaI.l with respect to the 

If we consider the spectm of x(L) and y%t), given by 

and define the channel luw-gass transfer function as - 

then we bsve 

Rote that H ( f , t , l  is the ampl.ltude of' the equivalent lcrv-pas8 chmelR8 

response a t  time t t o  a sinusoiibl excitation a t  frequency f .  

s h m  by notfng that if X ( T ]  i n  (1-5) is e 

Thi8 can be 

then At)  becomes 

It w i l l  be assumedl that a(.,%) is a sample function f r a n  a cmplex, 

iersrnean s-tatiomry Geussian ranikxn process, Therefore, the statistics of 

p $ ~ ,  t) are completely described ky its autocorrelation %?tnction with respect 

t o  each of ttx two mriables. The correlation function corresponding %lo 

E(T,t) r_s given by 
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g 1-10] 

We w i l l  assume %bat the channel *a be Sndeled obeys probability laws 

vhich are independme of the vaxkable t ( i . e* ,  B(?,t) is wide-seaee eta- 

thnary i n  the variable t ) ,  That is, only the time dif'ference and not the 

actual time of eval*wtion is  perthent in the evaluatlan of R 

can w r l t e  

Thus we e' 

R g ( a , t , ~ , a Q  Rp(T,P,84 
/ 

We can deffne a correlation function for H(f,t) in a manner similar to 

g 1-19) 

%(f,t,Q,8) = Is(i?,.t)B*f + Q, t + a) $4..l] 

R c a n  B be related to % as k'olpaws: 

e 

r 

t 

Let us naw B B E U C I ~  that the fitetistical properties of the channel befag 

considemd m e  stich ?&at % depenb only on the frequency difference \retween 

the twc frequmcy variables of i n t e r e s t  and not the actual values of: the 

frequency var>.ables ( L e , ,  B ( f , t ;  is  wide-sense atationsry in the var3.ablc f). 



This means that %(f,fl-f,6) I s  oxily a function of fl-f and not of f 

exp3 f c i t ly .  

Letting R = fl-f, dn = -df 

Pbyslcally we may envision this result as indicating that the chamel 

ssatbrer or p t h  which introauces delisy T in the t,masmitted signal has an 

associated transmission gain which is ancorrelated with that of any dif f -  

erent delay. 2 



11- T a m  Delay Line Shuiktion of me-Variant channels 

In this sactlon a basis for tapped delay line simulation of the 

equi.valent lCrW-g€iSS channel is dwelopedl. we recall that x'(t), a e  

transmitted signal, wac2defined to  be a bandlimited signal whose f'reqcnency 

components e s t  only in the range (fo - 2, B fo + z). 8 This means that 4%) 
(see E¶. (1-1)) is also a bandlimited signal existing in the range 

Therefore 

f 2-1) 



LL 

Now note that B is the convolution of a - sin function and B( T, t )  ,, 
X 

LL 

Therefore B I s  a bandlimited function and w e  can we the sampling 

representation f o r  it 

Therefore 
ar 

now since we desire to associate @(?,t) with a physical dispursive 

charinel, we expect that  B(i,t) sh0d-d be zero f o r  some value of T greater 

t'laan smX, say. Therefore B(+,t) should also be essentially time-limited 

i n  that there should be same quantity Tm such that the energy 

A 

" 'r~t"2aT should be negligible cmpred t o  the  energy 
'IT! > T 

* 2 €+ 

'eCT9t)! ". merefore, the following agproximstion is valid '!TI < T m 

a! 
An zctuai chamel, being physically realizable, w i l l  have some average 
delay To such that p(~,t) . t i i l l  be nonzero i n  the range (To-Tm, To + Tn), 

2 Tm. 
' t ~ v e f o l l ~ s ~  it Pas been assumed t o  be zero TOP convenience. 

0 
Sirice the value of To has no effect on the shape of the received 



whzre f w ]  is the largest integer in W. 

Now if we define bm(t) f3( {,t) and let  A = 

block diagrem for a representation of the ccmputing of y(t) frcan x(t) 

* 
we caa use the follawix?g 

Figwe 1 

!i?hAs diagrem forms the basis for the bpped dalay bine simulation of t’ie 

time-variant channel. 

As was stated previously, the statistical nature of @(s,t) is can- 

pletely specified by its correlation functfm. 

simulate the channel with a tapped delay lfne model ,  it 1s necessary tiit 

the bm(t)*s possess the s ta t i s t ics  which will produce the proper s t a t i s t i ca l  

chazecterization of f3(T,t). The 8.t;alA.stisl. properties of the b&t) f s  w i l i  

now be detellnined from the statistics of’ ~( r ,  t )  . 

How *a order to accurately 

We first note that the bm(t)’s are l inear func thmls  defined on 

f3(T,t). Thus, they are stationaiy Gaussian mndm processes. It there- 

fore sclffices to  cmpute their correlation functions t o  cmplete their 

statistical descriptton. Recall that  the gafn finction for the mth tap at 

ti= t was foua  t o  be [see Eqt (2-6) 3.  



bmb> = 

L e t  u s  now define 

as follows 

the correlatian function associated w i t h  these tap gains 

Haw for values of m and n which are not near t o  each other, the product of 

the - functions is small and the value of ~ ~ ( 8 )  should be small. For 

values of m ani3 n which   re near to each o a e r  (say Im - n\ = 1 or 21, the 

orthogonality 09 the 7 sin functiuns w i l l  cause -e value of prn(6) t o  be 

small provided p(?,A) is reasonably constant over a range of width 5A t o  1OA 

near 7 = mA or nA. We can expect that p(?,8) will be reasonably constant 

Oyer regions of' width 5A t o  108 if the t o t a l  multiplth delay spread of the 

channel is much larger than A. 

near the ends of the delay l i n e  03 for taps near the center; hwever, the 

stirengthe of %he tap galla Punctions at %he taps near the ends will n o m l l y  

sin x 
X 

This agqroximtian is not as valid for taps 



be much smaller than for taps near the middle. !Chis demonstrates that 

for many cases of interest, a tapped delay line model can be develom 

using the assumptbn that the fading a t  each tap is uncorrelated wi%h the 

fading a t  any other tap. 

If a -re a c t  representation is desired, or the assumption 02 indegen- 

dent fading a t  each tap is not valid, then the correlationa ~ ~ ( 8 )  must be 

cmputed by equation (2-7) above. Then, if the assumption that p(7,b) is 

sagamble, is mde (i.es, p(?,6) P r(?)aq(8))# a straightfoxward method  of 

creating tap gain functions w i t h  the proper correlations f m  a set of 

independent Gaussian randm processes can be found. The assumption that 

p $ ~ , 6 )  is separable can be shuwn t o  be equivalent t o  the assumption t h a t  

the velocity distribution of the scatterers is identical for each group of 

scatterers contributing a given delay T? 

state of theoretical and exprime9talkna~ledge concerning existing scatter- 

multipath channels is not sufficiently w e l l  developed to  provide a more 

1% also appears that  the present 

P ( W 1  = d+dOl 
Without loss of generality, we can l e t  q(0) = 1. Therefore, r(a) anusti 

be positive for all T. 

ttons for the tap multipliers are of the form 

Now from equation (2-7) we f b d  that the correla- 



where 

I 0 

(2-10) 

! h i s  means that all the tap multtplier auto- and cross-correlation 

functions have the same functLona1 dependence an 6. 

multiplier functions bave identical foxma for their auto- and c r o s s - p e s  

Therefore, the tap 

spectral density functtons. 

be generated fram a set of 2rBT,3 + 1 independent Gaussian randoen processes 

whose spectral denstties are  all identical t o  those of the b$t) *s by form- 

iDg suitable linear canbinations of these processes. The appropriate 

Thus, the se t  of tap multiplier functions can 

linear caubination can be determined in the following mnner. 

dependent processes t o  be canbined be ai(,t], i = -b!f!m], . . ., - l ,O , l ,  

. . .b!Fm]. Since the ai( t) are independently generated, we will have 

L e t  the in-= 

- 
2 Here we bave assumed that a ,&t) = 1 for convenience. As stated above, 

the b,(t)'e are obtained frcm a linear embination of the am{t) '80 nus 

we have 

where the c**s w i l l  be ccaqiLex canstantsl. The correlation of the bm(t)'s can 

now be written as 

k 3  



k 

loow fran equatian (2-9) we know that 

for a l l  m,n 

* 
Bow l e t  us define the following mtrices  : 

c+ = gcT>* (conjugate transpose) i 2- 25) 

"hen equation (2-14) becomes 

R = CC+ 

~VQW f'ran (2-10) it can be seen that since r (T)  is real, the rm are also. 

Furthermore, it can be seen that rm = r 

and is therefore Hennitian. 

Hence, R is a symmetric matrix 

Therefore, (2-13) w i l l  always have a solution, 
inn -rc. 

but the solut ion C i s  not unique. 

identify one which ie; a real matrix (imgying the G 

factors and will not require mse shift.81. 

Of the inf ini ty  of solutions C, we can 

w i l l  be only g a b  
%I 

Since R is real, there e f i s t s  

a matrix 0 which diagonalizes Re That is 

O+RQ = A 

Y 



Where A is a diagonal matrix whose elements Xiare the eigenvalues of R. 

0 can be shown to be the matrix whose columns are the eigenvectors of 

R, How, since €4 is a covariance matrix, it is positive semidefinite, and 

therefore a l l  I t s  eigenvalues are positlve and real. Thus, me solution 

for C I s  given by 

C = O A  b +  0 @-E$) * where A *  is the diagonal matrix whose entries are ce Thus, the weight- 

coef'ficients required to prduce the tapmultiplier functions from a set of 

independent Gausslan randm processes can be found either analytically or by 

nllmerfcal methods. 



III. Statistical Prqpe d e s  of mpped Delay Line System 

In the previous a e c t f k  we have discussed the statistical properties 

reqdred of a tapped delay line e y a k  whtch is to model a given time- 

vaz-iant cknnel. It I s  now of interest to determine haw closely such a tapped 

*lay line system can appmximate ‘be given time-variant system. As a 

’basis for a stuiiy of this questtan, we w i l l  now irnrestigate several statis- 

t ical  properties of a general Capped 8elay l ine system. This analysis w i l l  

be used in Section V to prrovide an ind icat ion of how effective the tapped 

dels;y lins aethod is for 8hmlatioa of a certain idealized tropospha~Ic 

It i s  of interest t o  cunpute the time-frequency correlation function 

for the tapped delay line system. This correlation function is defined as 

i & T , C ’ t , B )  = Ere(.r,t)s+(? + F , t  + s)’J (3-1) 
0 

HOW for We tapped delay l ine,  p(r,t) i s  given by 



Hote Qat the pJ"oduct S(? - a) 8(r + - M) i s  a pawduct 09 delta 

functions wMch I s  zero everywhem on the (?,F) pLane except a t  ( T ~ F )  = 

= (nA, M - TI or (?,F) = $nh, fk-n)A). 'pB.ius it is equivalent to the 

The f%quency correlation function for the tapped delay line system 

can 13au be found. Recall fram Eq (1-8) of Section I that the tinae variant 

-transfer ftmctian associated vi th  a system is given by 

Q 3-63 

H a s  the frequency correlation function associated with the tapped delay 

line I s  defined as 

3uba;tituting (3-6) into (3-7), wz k v e  (cmpse with Eq. (1-12)) 



W 
32n[f + f 6(r2 - kA)e 

a 

M M  

d*l 

*Io2 dT2 

3-91 

Note! that eH can be considered B two-dimensional Fourier seAes %?a f 

and c). 

In connectZon vith the measw8pent of tple frequency correlation furac-tionra 

it is of interest to ccxwnpute another statistical quantity, 

need for this qrpantiity, let us consider the exprimenf;al metha3 whtch would 

be used to determine the frequency correlatioii Punction for a charnel. Tae 

To understand the 
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r 
cos(*.)- J 

=&w=2 

In this exper3.mental sysixm3 Wo sinusoidal signals are tmnamiteed throw 

the channel and the reapansea to  these excitations are separated a t  the 

channel output. 

cc .related to 

fc ct ion for freqwncy EeparaWm a,, .. 09. 
a ow-pass egu%valent chaxme3. model, t z e  excitation functions must be 

e‘ it and e e t .  

The m~iLitu&es of the txo channel respansea are then cro~s- 

ax1 e e t b z t e  of the chamel@s frequency correlation 

To perform t h i e  experiment w i t h  
&A 

0 

’The respns3 to EWLZ an excitation will be (see Eq. (1-5) i 

0 j”i@ ” T$ 
yi3*$ = J PYA e d i  

..a 

jus 5; 
= Ai(%) e i 



channel will field the quantity 3[R.(A.,(t)) Re(AZ(t)}]. For the tapped 

delay line system, B[Rq\(t)}RdA2(t)}] can be computed as %oU,ms. We 

note that 

We note that for the tapped delay line system 

A .  

where bn[t) = Re(bn(t)) 

We now have 



0 

M 
c) #-a 

Now the tapped delay line system I s  

-i 

constructed such that 

a l l  n,k 

all n,k 



~. In Section V, Bqs. (3-9) and 63-15) are evaluated for a specific time- 

variant channel, and Eq. (3-15) is canpred with experfmental. results f m  

a tapped de.'ay line model. 



N. Distortion Parameters in Time-V&riant Channels 

0 The work of Sunde 3 has shown the importance of the i n w e  

values of the llnear delay  diutorbion and linear amplitude distortion in 

the m p o s t  importrurt eifccte tihicb 8uch channels impose on cmnniniation 

signals. Unear delay distortion oudt linear amplitude dietort ion can be 

'&e linear amplitude distortion, 0, associated with R(f,t) at frequencr f0 

is defined to be the first f-derivative of R(f,t)  evaluated at +f0, Le. 0 

I fcf 
0 

The l inear delay distortion, d, associated with H ( f , t )  is defined as tfre 

negative of the first f-derivative of the gmqp or envelope delay Arnctfoa 

associated with (f,t) at fo, Le.  

The reaultrr of Rice 4 and extensions of them 3 proxl.de fimJt-order 

Statistics of the linear d e w  and aqplitude distortion paraooe%crs if (as 

has been assumed in th ia  work) the channel tmsfer function i o  asmined to 

be e complex gaussian pmcess. 

the time-variant transfer f'mction is given by 

We aa8ume -that the correlation function of 0 
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It hewn that under the above conditions 0, the l inear amplitude di&or- 

t i o n  of the channel, is a normal random variable w i t h  densi ty  function 

1 - 2 
P@) e 

uu 1 

1R;lrthcnmre, a? distribution f2ulction associated with the Unear delay 

distort ion,  d, can be e4reaaed 88 follows 

where g(x) ;L. (bo bk/b: - 1 + 4 x2) (1 .C x2) 

We w i l l  IH~W derive the equations necessary to COlIIpute the linear 

amplitude and d e l a y  distortions associated with a tapped delay l i n e  rsyatem- 

We first consider l inear  arralplitude distortion. 

ve have 

From Eqs. (4-1) and (4-2) 



4 3  

I .  

. .  .. 
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(4-7b) 
LI a 

It i a  now necessary t o  determine the qaatltitlee H ( f 3 t ) ,  B(f,t), 

H(f,t), etc. i n  tenna of  the values of the tag gain f’lmctions bn(t). 
6 

af 
Recall that for the tapped d e 4  line 

Thus, for the tapped l i n e  



when 

and 

- w a  can rewrite (4-8) a8 

M Thus 

theae we obtain 

M 

M ( 4 l O e g )  



( b U b )  

Substitution of Eqs. (4-9) throu& (4-ll) into Q8. (4-6) an8 

(4-7) fields the values of linear anpplitude and delay distort ion at any 

frequency f in term of the value8 of the tag delay line gain f b c t i o n s  

at time t. Considerable ainpllf icat ion occurs if these distort ion factor8 

are evaluated for f = 0. In this awe we find 

M 

M 

Ilrrr-pi 

W 



(4-14b) 

&I Section V, the Of Bll experiment pm8enfed where EqSe 

(4-12) tbrm&~ (4-14) were w e d  with Eq. (4-7) t o  compute the l i n e a r  delay 

d i E t O r t l O n  associated w i t h  a randomly time-variant channel simulated w i t h  a 

d i g i t a l  coqputer. 

c q a r e d  w i t h  a plot of the theoretical distribution Ataction for d 

as given i n  equation (4-5). 

(me distribution Function for this  quantity i a  then 



v. &pli cation to Simlation of a Trcrposl> heric Scatter Ccrp3nunication 
Qzaanel 

In t h i e  section, a theoretical model for a tropospheric scatter 

coammnlcation channel is used together with the theory presented in 

Section IT to construct cu1 eqperkntal troposcatter cbatllpel 8 i m ~ h t i o n  

for the d i g i t a l  aqputer. S m ?  exgerimental results obtained from t h i a  

stnntfPtor axe ab0 presented. 

srmBc3 has derived an ldealieed mdel for a tropospheric scatter 

charmel for wMch he has deduced thst the reeponse to et transmitted 

sinrtsoid is a ~ e w s i a n  random procees. 

function a;l(Cl,O) czul be shasn to be 

~ b r  t h i a  -el, the correlation 

Tbprs, we find fraa equations (1-15) and (2-8) 

Exgerimental evidence has also been found3 indicating that 

- O2tj2/2 
q(8) = e 

!!!has for this channel, we have 

and 

6-31 



Therefore, in the tapped d w  l i n e  mdel for this chamel, WB f lnd 

Note that for given m and n$ rm is (L Mction only of the "time- 

bandwidth" producfi BT- except fbr the uniplBortant arltiplfcative 

constant. 

In this section, results am reported concerning tag@& delay 

Une simulation of a trapo8pheric scatter channel poesessing the 

correlation -&ion of Eq- ( 5 - 5 ) .  Erran equation8 (5-5) and (5-6) 

it can be seen that four parameters ~u 'e  required to specifg the tapper3 

d e 4  l i n e  modelo These are B, us T- and Roe 

In the s w e m  to be delrcribed, B was chosen to be os Hertzo m s ,  

the spacing between -8 on the delay l ine  was 2 seco dvp161 C b S m  80 

that the time correlation fbuction width (distance between eol  point^) 

WQUU be at least ID time ean@.es (20 seconds). Therefore, '6 ~ ? r o i ~ n  
-1 to be -25 8 e C o  

multiplier in (5-6) equal to unity. 

order to insure that fAe absolute value of the l inear  delay distort ion 

paremeter associated witb the channel would exceed 61s stc2/rado bo$ 

of the time. TJw relationship between & and the probability 

Ro was chosen to be 2 i n  order to mdce the constant 

The value of T- was chosen i n  
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distribubion ftmction o f  the l b a r  d e l a y  distort ion parameter, d, ia 

found in equation (4-5). However, equation (4-5) i a  given in tenns of 

the moments bo auld b2 which 1D118t be related to T-* 

7 o f  B f e r e n c e  3 contains a grap~h of equation (4-5) which 

iadicates that \ d l  exceeds tbe quantity k a o  40$ of the time if k 

3s wroximately equal t o  2. !Qm, t o  have Id! exceed 6/* mc2/r& 

qt of the time, we nust have 

6 b2 
7 = 2 r  0 (5-7) 

Eow b2 and bo are defined in equation (4-4b) while r(?) is given 

by equation (5-2). Combining these equations we fiad that 

bo - 2T- 

!the rirsf step i n  speciQing the form of the taerpea delay line is 

he coapntting of the t q p  gain Amction correhtiolls, the rm's of 

q= (46). Por this agsteau Bq= (5-6) ww emhated w i n g  = r i d  

f 

ntegration tecRniques on a digi ta l  eolqputer. Because of the! discrete 



nature of d i g i t a l  aqputationa, the desired d u e  of T- was rounded 

off to 1.m sec. leharrp, the parctmeter BT- was 0.85. -tion (5-6) 

was evaluated for m a  of m and n from-8 to *8 (2.eet the 

matrix R I s  a 17 x 17 matrix). lappenaix A gives the results of this 

corqgrrtation. 

IbenextsfepreqPiradiorsettiDgtrp.EhetagpeddelayIlnerrystern 

was to determine the welg?rta coefficients, the c Os, by solution of 13 
Equation (2-16) for the mtrix C. As discussed in Section Ip, this 

r e q y i n a  the determination of A, a diagonal matrix of eige!nvaI.ues o f  

B, and 0, the matrix of elgemrectors of R. Pbr the s w e m  t o  be 

discussed, it was felt that a delay l ine  of ll taps w3uld be sufficient; 

Since the entrler In R become quite earell at a distance of flve 

elements fmm the ceder of the m t r h  plus, the 0 aad A matrices 

-re anputed for the center ll x ll section of the or2ginal 17 x 17 R 

matrix. Appendix B lists the eigenvalues, the 0 matrix, and the resulting 

C matrix corresponding to the center U x 11 eection of the R matrix of 

Appendix A. 

In order to cmplete the des- of the tapped d e 4  line simulation 

system, a linear filter must be faund which will inpart the proper 

autocorrelation function to each of the independent random process 

t o  be paaaed thxwgh the wcightfng coefficientse %Is filter is needed 

eince the d i g i t a l  carngutcr produces uncorrefated random mnnbera for 

aaI@es of random procellcres. 

through a linear fllterlng operation to produce sequences with the 

proper saagple-to-s@qpb correlation. In fbe present case, we desire 

Them! uncorrelated sarqphe Parat be passed 



to 

or 

procear with spectral density sC) at i t a  oatpaf when whik noise ie 

w e d  to i t a  iqcllrt porrrasaes a transfer Amdlon E&P) aatisflee 

method for doing W e w  !Che block diegraan of figure 3 v88 used as the 
I 



basfa of ti digi ta l  c-er pr0gx-m t o  generate sarqples of the tqp 

b . 

3 

equations w i t h  the help of a -tal caputer. The values for the U. x 11 

center section of the R matrixgiven in Agperr i lxA were substituted h t o  

eqmtions (3-9) and (3-15) for these evaluations. plots of the results 

are shown i n  ~ g u r e s  4 through 6. 



5-7 

‘ 0  

0 

Hn Figure 4, the frequency correlation function for the mathemtical 

channel model is plotted together with @H(f, I), 0) (Equation (3-9)) fo r  

f = 0, 0.05, and 0.10 Hertz. 

mating the physical bandlimited channel w i t h  a delay l ine containing only 

a f i n i t e  number of taps. 

frequency correlation function R&f, 0, 0) whhch is independent of the 

frequency of evaluation, f, and dependent only on the frequency seperatlon 

n. 

Hertz, the frequency correlation function shifts and loses the sin x / x  

shape. Thus, for center frequencies not close to  zero, the ll-tap delay 

line does not exhibit a fmquency correlation function w h i c h  is close t o  

that of the mathematical model. Figures 5 and 6 8hW the desired theoreti- 

ca l  mquency correlation function (sin x/x form) together with the theoreti- 

c a l  gredic-tion of a physi&l ’measurement of W s  ‘function, qRe[4 ( t ) )  

R,{A,(t))], obtained fram equation (3-15). 

say u) , is zero, while i n  Figure 6, w1 3: 0.10 Hertz. 

plotted as a function of n 

These curves shaw the effect of approxi- 

The mathemtical modal was specified to  have a 

For the tapped delay line, however, we find that for f = 0.5 and 0.10 

In Hgrm 5 the center frequency, 

’Both figures are 1 
(ml - w2)/21(, the frequency separation. 

In Figure 5, the theoretical plot  of ErR,[Al[t)] %[A2( t ) )  3 is identical 

t o  the plot of @&O) for f0 = 0 in Figure 4. 

the measured correlation function is a good approximation to  the desired 

s in  x/x curve. 

aspects. 

curve is markedly different fm the desired correlation function. 

for negative values of 0, the theoretical curve is seen to be a good approxi- 

Thus we see that for “5 = 0, 

In Figure 6, t h e  theoretical plot has several iate?:esting 

first, for values of 0, greater than +.1% Hertz, the theoretical 

Rowever, 

mti.on to  the desired functiona The reason f o r  th%s behavior is  that a measure- _ _  
ment taken for ($1 = .1 ana !J near t o  .L5 HIeurt;z hplzles that one of the sinusoids 

being p a s a d  through the charnel Ma a freq1.er.c~ near .25 Hertz, which is the 
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Figure 5 -I E[Re{Al(t ' ) f  Re{.$(t as a f u n c t i o n  of A = - 9  f o r  w , = ~  

X - - d e s i r e d  sin(x)/x f u n c t i o n ,  0 5  t b e c r e t i c a l  f u n c t l o n  f o r  
t a p p e d  de lay  line (ICq, 3-15 1 
tapped d e l a y  l i n e  e i n c 5 o t o r 0  

experimentai  r o s n 3 . t ~  fron 
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t i I I I 

!u 10 k 20 -R 



$ 

' e  10 
aa a f u n c t i o n  of Jr.r"+'~for cu,=.fo 

function, o theorst  7 c a l  
function for  tapped delay line (Eq, 3 - 1 5 ) , A = -  experinen- 
t a l  r e s u l t s  from t a p p e d  de lay  l i n e  simulator. 

d 

parameter of tropoapheric scatter ehannelj x -  theoratical 
d i s t r i b u t i o n  function,- - experimental distribution 
function, 



VI. concluions 

It is concluded that the psdhods pmse&ed in this report caxi be 

used for designlng acceptable t a p p e d  delay line models of ramlady 

tim-variant charnels. Further it has been shown that aigital computer 

stmzlation of the tapped delay line model is practical. 

an example is pres&& for which s e d  expsimentally meamred 

m i t i e s  assoclthd with the aystem gam good agreement with those 

of the desired e e m a t i c a l  e e l .  

d e l q  lirre simalator can eve poor results if sigrmls w i t h  freqwnciea 

very close to the theoretical limits of the aixizulator are used. 

appears that a digital line-wriant channel sixnulator of the type de- 

s c r i b d i  in this - can be usef'ul for test- of d u b t i o n  arrd 

d-ion schemes for use d t h  t%ne-variant chamds. 

In thj.s report 

It is also seen that the tapped 

It 



A-P 

The following are the entr i e s  for the R matrix computed from 
aquatlon ( 5 - 6 )  for mmaX .85 and BR, 1, 

Column Number - 
1 -8 -7 -6 -5 = 'b  

0,033194 -8 0,001569 -0,001797 0,002103 -00002535 

-7 
-6 

-5 

-3 
-2 

-1 

7 

8 

-0,001797 

QoOO2IO3 

-0 002 53 5 

0,003194 

-00 004330 

0. oO6811 

-0,0191) 1 

-OoOOl 5 S 6 

0 017646 

-0 0006 576 

00004232 

-0 o 003139 

00002500 

-0,002079 

0,001780 

-0.001556 

0 OOZOSS 

-0,002408 

0 o 002903 

-0 003659 

0 , 004963 

-0,007813 

0.022020 

0,00203 5 

-0 0 020076 

0 097507 

-0 e 00483 5 

0,003588 

-0 0 00 28 58 

0 o 002377 

- 0 0 0 ~ 2 0 3 5  

00001780 

-0 0 002408 

0 ,, 002818 

-0 0 003398 

0,004285 

-0.005815 

0.009165 

-0,025942 

-0,002776 

0.023288 

-0 .008746 

0,005639 

-0,004188 

OeOQ3337 

-O0OO2776 

00002377 

-00002079 

0 . 002903 
-0.003398 

0 0 004099 

-0.005171 

0.007023 

-0,011087 

00031578 

0 004011 

-00027736 

0 o 010481 

-0,006769 

OoOO5031 

-0 0 004011 

00003337 

-O0 002858 

00002500 

-0,0036 59 

0 03428 5 

-0,0?5171 

0 096527 

-0000S875 

O00I4045 

d0 ,, 0$0380 

-0 0363 06 

0,034318 

-00013089 

0 O : m ?  5 

-00006306 

0 00 5 03 1 

-0,004188 

0 , 003 588 

-0 0 003 139 



A-2 

-8 
0 

-7 
-6 

-5 

-3 
-2 

-1 

0 

1 

3 

Q 
9 

e 

-3 
-00004330 

00004963 

-OC005815 

0.007023 

-0oOOS875 

Oo012092 

-0o0192I.4 

0 056133 

0 0113 66 

-0,045116 

0.017482 

-00011366 

0,008475 

-00006769 

00005639 

-0 0 00483 5 

0.004232 

Column Number 

-2 -1 

0.0068111 -OoOP913B 

-0 007813 00 022020 

0.009165 -0 o 02 5 94 2 

-0 ., 011087 0,031578 

OoOlS045 -0 040380 

-0.019214 0 0056133 

80030793 -00 093051 

-0.093051 0 32 83 03 

-0,026657 0.146364 

0.066559 -0,146346 

-0*O26657 0,0665 59 

0,017482 -0.045116 

-0,013089 0,034318 

0 010481 -0 0 02773 6 

-O00OSq46 0.023288 

00007507 -000ZO076 

-0,006576 0 01764 6 

0 

-0 0 001 5 5 6 

0,002035 

-0 0002776 

0,004011 

-0 0 0063 0 6 

0,011366 

-0,026657 

0,1463 64 

0,900085 

0 .I46364 

-0,026657 

O,ol1366 

-00006306 

0,004011 

-00 002776 

0,002035 

-00 001556 



-8 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

2 

-OoO06576 

0 I) 007 507 

-O0O087f+6 

O,OlO4Sl 

-0,013089 

0.017482 

-0,026657 

0 0665 5 9 

-0.026657 

-0.09305~ 

Oo030793 

-0 019214 

0,014045 

-0,011087 

0 009165 

-0 0078L3 

0,006811 

Column Number -- 
3 4 5 

Oa001c232 

-0 004834 

0.005639 

-0,006769 

0,008475 

-0,011366 

0 017tc82 

a= 0 04 5 1 1 6 

0,011366 

0,056133 

-0.019214 

0.012092 

- O e O 0 S 8 ' l 5  

0.007023 

-0,005S15 

0,004963 

-0.004330 

0.002500 

-0,002858 

OoO03337 

-0 0 004011 

0 e 005031 

-0 . 006769 
0 010481 

-00027?36 

0 , OO4Oll 

0.03 1578 

-0,011087 

e o  007023 

-00005171 

0 OOrC099 

-0 0 0033 98 

0 002903 

-0 o 002 53 5 



3 

A-4 

Column Number 

8 

-8 

-7 

-6 

-5 

-4 

-3 

-1 

1 0  

1 A 
2 

3 

4 

5 

6 

6 

0,001780 

-0 0 00203 5 

Oo002377 

-0,002858 

0.003588 

-00004834 

Q0007 507 

-=0,0200?6 

0 o 00203 5 

0 0022020 

-000078l3 

OoOO4969 

-0 9 003 659 

0,002903 

-0 . 002408 

O,QO2058 

-00aoi797 

-0 0 001 556 

0 0 001780 

-0~002079  

0,OQ2500 

-0 o 003139 

0,004232 

-0,006576 

0,017646 

-0 0 001556 

00.01913 1 
0.006811 

-0,004330 

0 o 003194 

-0,00253 5 

0.002103 

-0OOOI797 

0 001569 



B-Y. 

In this appendix, the  eigenvalues and t h e  matrix of e igsnveckars 

am3 given for the center 11 x 11 s e c t i o n  of the R matrix given in 

ApDendix A ,  The C matrix which s a t i s f i e s  equation (2-16? i s  a l s o  

given.  The  r e l a t i o n s h i p  between t h e  e igenvaluea,  matrjx of  e igen-  

v e c t o r s  and C i s  given by equation (2-l8), 

The eigenvalues of R are: 

e957946 
e 570340 
,129005 
0617526 x lo”* 
.265153 x 10-3 
.238501s x 10-5 

Since the R matrix i s  a covariance matrix, it is p o s i t i v e  d e f i n i t e ,  

Therefor. it rrhould not  posiless negative e i g e n v a l u e s ,  

that t h e  two negative eigenvalues shown above are due t o  round-of!: 

U C L - O ~ ~  i n  t h e  d i g i t a l  computation, 

It appears 
0 

T h e  matrix of eigenvectors of  R, t h e  0 natrix, is  given on pa;;c: 

k 2  and L 3 ,  

of the 

Thc c ntatr3.x corresponding to t h e  center U x U section of t h e  

m a t r i x  given in Appendix A is shown on pages l3=-4 and &5, 
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